|
|
Scientists at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) show that the most common forms of frontotemporal dementia (FTD) as well as the neurological diseases amyotrophic lateral sclerosis (ALS) and progressive supranuclear palsy (PSP) can be recognized by blood testing. Their procedure is not yet ready for routine medical use, but in the long term it could facilitate disease diagnosis and advance the development of new therapies already now. |
|
FTD, ALS and PSP form a spectrum of neurodegenerative diseases with overlapping symptoms characterized by dementia, behavioral symptoms, paralysis and muscle wasting, movement impairment and other serious impairments. In Germany, it is estimated that up to 60,000 people are affected by one of these diseases. Although they are relatively rare, their consequences for health are nevertheless severe. “As yet, there is no cure for any of these diseases, and, with current methods it is not possible to reach a conclusive diagnosis of the molecular pathology of these diseases during a patient’s lifetime, since brain tissue must be examined,” explains Anja Schneider, a research group leader at DZNE and Director of the Department of Old Age Psychiatry and Cognitive Disorders at University Hospital Bonn (UKB).
“However, a diagnosis of the underlying pathology is required for the development of therapies and for stratifying patients according to their disease. Only such stratification allows targeted and therefore potentially effective disease-modifying treatments to be tested,” continues Schneider, who is also affiliated with the University of Bonn. “We now show that PSP, behavioral variant of FTD and the vast majority of ALS cases with the exception of a particular mutation can be recognized by blood testing and this also applies to their underlying pathology. Our study is the first to find pathology specific biomarkers. Initially, application is likely to be in research and therapy development. But in the long term, I consider it realistic that these biomarkers will also be used for diagnosis in medical routine. However, further studies are required for this. In fact, it would be particularly important to determine how these biomarkers develop longitudinally, that is, over the course of a disease, and how early they rise in the disease course.”
The new blood test, which is based on the measurement of so-called tau and TDP-43 proteins, could provide decisive evidence for diagnosis. There is a particularly strong need for the “behavioral variant of FTD” which was investigated here. This is because the symptoms of this most common type of FTD can be due to two different pathologies – i.e. abnormal processes – in the brain, which can generally only be differentiated by analyzing tissue after death. Only in those few cases where the disease is genetic can DNA analysis provide certainty during a patient’s lifetime. The blood test now enables a precise diagnosis to be made during a patient’s lifetime, even if there is no mutation. This, in turn, is a prerequisite for testing new therapies against these various FTD pathologies in clinical trials.
To the original publication
To the DZNE press release
(Picture: DZNE / Frommann)
Also:
Climate Change: Rising Temperatures May Impact Groundwater Quality As the world’s largest unfrozen freshwater resource, groundwater is crucial for life on Earth. Researchers at the Karlsruhe Institute of Technology (KIT) have investigated how global warming is affecting groundwater temperatures and what that means for humanity and the environment. Their study indicates that by 2100, more than 75 million people are likely to be living in regions where the groundwater temperature exceeds the highest threshold set for drinking water by any country. Read more
The dark side of transmission X-ray microscopy X-ray microscopes are essential for examining components and materials because they can be used to detect changes and details in the material. Until now, however, it has been difficult to detect small cracks or tiny inclusions in the images. By developing a new method, researchers at the Helmholtz-Zentrum Hereon are now able to visualize such changes in the nanometer regime. In particular, materials research and quality assurance will profit from this development. Read more
|
|